2025-06-20 17:38:31 +02:00
2025-06-20 00:59:56 +02:00
2025-06-20 00:59:56 +02:00
2025-06-20 00:59:56 +02:00
2025-06-20 00:59:56 +02:00
2025-06-20 00:59:56 +02:00

lbc

Latest version PyPI - Downloads GitHub license

Unofficial client for Leboncoin API

import lbc

client = lbc.Client()

location = lbc.City( 
    lat=48.85994982004764,
    lng=2.33801967847424,
    radius=10_000, # 10 km
    city="Paris"
)

result = client.search(
    text="maison",
    locations=[location],
    page=1,
    limit=35,
    sort=lbc.Sort.NEWEST,
    ad_type=lbc.AdType.OFFER,
    category=lbc.Category.IMMOBILIER,
    square=[200, 400],
    price=[300_000, 700_000]
)

for ad in result.ads:
    print(ad.url, ad.subject, ad.price)

lbc is not affiliated with, endorsed by, or in any way associated with Leboncoin or its services. Use at your own risk.

Installation

Required Python 3.9+

pip install lbc

Usage

Client

To create client you need to use lbc.Client class

import lbc

client = lbc.Client()

Proxy

You can also configure the client to use a proxy by providing a Proxy object:

proxy = lbc.Proxy(
    host=...,
    port=...,
    username=...,
    password=...
)
client = lbc.Client(proxy=proxy)

To perform a search, use the client.search method.

This function accepts keyword arguments (**kwargs) to customize your query. For example, if you're looking for houses that include both land and parking, you can specify:

real_estate_type=["3", "4"]

These values correspond to what youd find in a typical Leboncoin URL, like:

https://www.leboncoin.fr/recherche?category=9&text=maison&...&real_estate_type=3,4

Here's a complete example of a search query:

client.search(
    text="maison",
    locations=[location],
    page=1,
    limit=35,
    limit_alu=0,
    sort=lbc.Sort.NEWEST,
    ad_type=lbc.AdType.OFFER,
    category=lbc.Category.IMMOBILIER,
    owner_type=lbc.OwnerType.ALL,
    search_in_title_only=True,
    square=[200, 400],
    price=[300_000, 700_000],
)

Location

The locations parameter accepts a list of one or more location objects. You can use one of the following:

  • lbc.Region(...)
  • lbc.Department(...)
  • lbc.City(...)

Each one corresponds to a different level of geographic granularity.

City example

location = lbc.City(
    lat=48.85994982004764,
    lng=2.33801967847424,
    radius=10_000,  # in meters
    city="Paris"
)

Region / Department example

from lbc import Region, Department

region = Region.ILE_DE_FRANCE
department = Department.PARIS

403 Error

If you encounter a 403 Forbidden error, it usually means your requests are being blocked by Datadome. To resolve this:

  • Try reducing the request frequency (add delays between requests).
  • If you're using a proxy, make sure it is clean and preferably located in France.

Using residential or mobile proxies can also help avoid detection.

License

This project is licensed under the MIT License.

Support

Buy Me A Coffee

You can contact me via Telegram or Discord if you need help with scraping services or want to write a library.

Description
Unofficial client for Leboncoin API
Readme MIT 113 KiB
Languages
Python 100%